

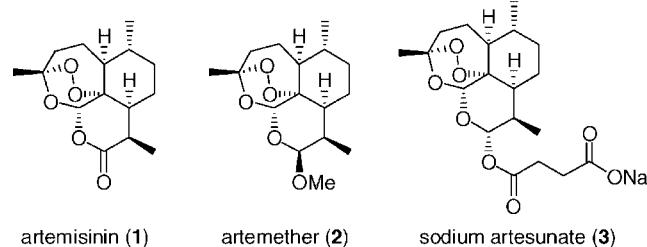
Received: 10 October 2007,

Accepted: 5 November 2007,

Published online in Wiley InterScience: 24 January 2008

(www.interscience.wiley.com) DOI 10.1002/poc.1307

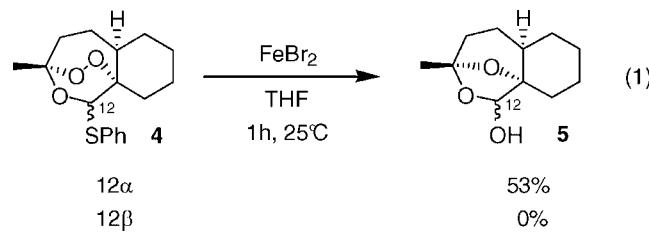
Antimalarial sulfide trioxanes: a revision of mechanism


Gary H. Posner^{a*} and Wonsuk Chang^a

The mechanism by which an antimalarially inactive sulfanyl trioxane reacts with ferrous iron is revised. Although originally proposed to involve a short-lived high-valent iron-oxo intermediate, the revised mechanism involves FeBr_2 acting as a weak Lewis acid promoting intramolecular redox chemistry between the peroxide unit and the resident sulfanyl sulfur atom; one of the peroxide oxygen atoms is transferred intramolecularly to the neighboring sulfide sulfur atom, oxidizing it into a sulfoxide and reducing the trioxane into a non-peroxidic dioxolane. This facile ferrous iron-triggered conversion of the parent 1,2,4-trioxane sulfide into the corresponding 1,3-dioxolane sulfoxide accounts for the observed lack of antimalarial activity of the parent sulfanyl trioxane without invoking the intermediacy of a high-valent iron-oxo species. Copyright © 2008 John Wiley & Sons, Ltd.

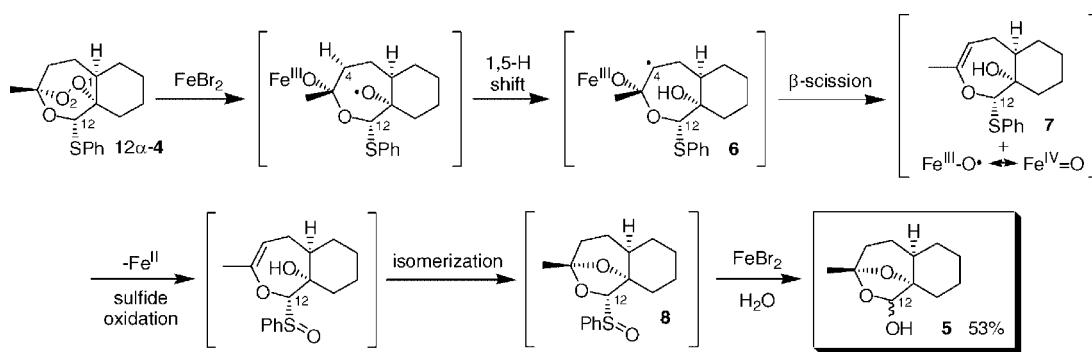
Keywords: peroxides; mechanism of action; intramolecular redox chemistry

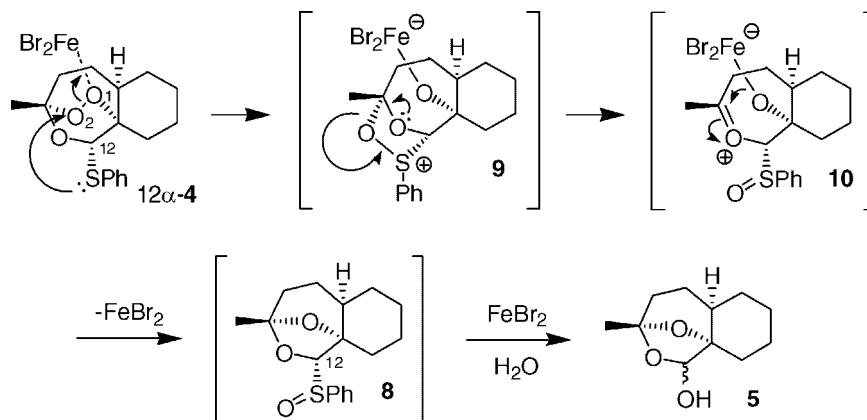
INTRODUCTION


Ancient herbal remedies in China have led to modern antimalarial drugs characterized chemically by a peroxide pharmacophore.^[1,2] Ferrous (e.g., heme) iron-triggered reductive cleavage of such O—O bonds in antimalarial 1,2,4-trioxanes like natural artemisinin (**1**) and its derivatives artemether (**2**) and sodium artesunate (**3**) initiates a cascade of chemical steps producing cytotoxic reactive intermediates which kill the malaria parasites in infected human red blood cells.^[3–5] Such cytotoxic intermediates include carbon-centered radicals,^[6] electrophilic epoxides,^[7] and putative high-valent iron-oxo species.^[8–10] Evidence supporting the intermediacy of high-valent iron-oxo species includes Fourier transform infrared spectroscopic data,^[11] rearrangement of hexamethyl Dewar benzene into hexamethylbenzene, oxidation of toluene into benzyl alcohol, and oxidation of thioanisole into methyl phenyl sulfoxide.^[12]

DISCUSSION

Years ago, we reported synthesis of simplified stable 12-phenylthiotrioxanes **4** designed to react with ferrous iron to form a putative high-valent iron-oxo intermediate.^[13] Ferrous bromide-induced room temperature cleavage of phenylthio-


trioxanes **4** is summarized in Eqn (1). Although the sulfones corresponding to sulfides **4** were shown *in vitro* to have potent antimalarial activity ($\text{IC}_{50} = 33\text{--}59 \text{ nM}$), only the 12β -sulfide **4** was comparably active ($\text{IC}_{50} = 56 \text{ nM}$); the 12α -sulfide **4** was not antimalarially active. We interpreted these results as shown in Scheme 1 in which release of $\text{Fe}(\text{IV})=\text{O}$ from the α -face of the C4-radical intermediate would be followed immediately by its oxidation of the nearby 12α -oriented sulfide sulfur atom. Ferrous bromide-promoted hydrolysis of the C12-sulfinyl monothioacetal functional group in intermediate **8** would then form the observed lactol **5**.


We now reinterpret these results without postulating the intermediacy of a short-lived high-valent iron-oxo species in this case. Scheme 2 summarizes our new current mechanistic understanding. *In silico* Hartree–Fock calculations of the ground state structure of 12α -sulfide **4** show that the sulfide sulfur atom is significantly closer to O_2 (3.06 \AA) than O_1 (3.22 \AA).^[14] Assisted by

* Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA.
E-mail: ghp@jhu.edu

a G. H. Posner, W. Chang
Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2685, USA

Scheme 1.

Scheme 2.

coordination of the hard but weak Lewis acid ferrous bromide to $\text{O}1$,^[15] neighboring sulfide sulfur atom nucleophilic attack on the proximal $\text{O}2$ atom would form, via a favorable 5-centered transition state, peroxide-cleaved intermediate **9** and then oxonium intermediate **10**; release of ferrous bromide from oxonium intermediate **10** and dioxolane ring closure would form C12-sulfinyl thioacetal **8** in which the original $\text{O}2$ peroxide oxygen atom is now located in the sulfoxide functionality. Ferrous bromide-promoted aqueous hydrolysis of C12-sulfinyl thioacetal **8** would then form the observed lactol **5**. This mechanism invokes $\text{O}2$ atom transfer (i.e., oxidation) of the polarizable 12α-sulfide sulfur atom, in this case without the originally proposed intermediacy of a high-valent ion-oxo species.

In conclusion, we propose here that ferrous bromide acts catalytically as a weak Lewis acid promoting neighboring group participation by the resident polarizable 12α-sulfide sulfur atom to mono-deoxygenate (i.e., reduce)^[16] the peroxide unit in 12α-SPh trioxane **4** and thus to render this trioxane antimalarially inactive. Deoxygenated 1,3-dioxolane versions of antimalarial 1,2,4-trioxane peroxides are known to be antimalarially inactive.^[9] In sharp contrast, the diastereomeric 12β-SPh trioxane **4**, which cannot undergo such sulfide anchimeric assistance (i.e., peroxide deoxygenation) because the resident sulfide sulfur atom is remote from the peroxide unit, is antimalarially potent. Likewise, the 12α- SO_2Ph trioxane sulfone,

in which the sulfur atom is close to the peroxide unit but is not nucleophilic and thus not able to participate in peroxide deoxygenation, is antimalarially potent.

Acknowledgements

We thank the NIH (AI 34885) for financial support and Prof. Paul O'Neill for many stimulating discussions about trioxane chemistry and pharmacology.

REFERENCES

- [1] A. R. Butler, Y. Wu, *Chem. Soc. Rev.* **1992**, *21*, 85–90.
- [2] S. Kamchonwongpaisan, S. R. Meshnick, *Gen. Pharmacol.* **1996**, *27*, 587–592.
- [3] S. R. Meshnick, A. Thomas, A. Ranz, C. M. Xu, H. Z. Pan, *Mol. Biochem. Parasitol.* **1991**, *49*, 181–189.
- [4] A. Robert, F. Benoit-Vical, B. Meunier, *Coord. Chem. Rev.* **2005**, *249*, 1927–1936.
- [5] L. Messori, C. Gabbiani, A. Casini, M. Siragusa, F. F. Vincieri, A. R. Bilia, *Bioorg. Med. Chem.* **2006**, *14*, 2972–2977.
- [6] G. H. Posner, C. H. Oh, *J. Am. Chem. Soc.* **1992**, *114*, 8328–8329.
- [7] W. M. Wu, Y. K. Wu, Y. L. Wu, Z. J. Yao, C. M. Zhou, Y. Li, F. Shan, *J. Am. Chem. Soc.* **1998**, *120*, 3316–3325.

[8] G. H. Posner, P. M. O'Neill, *Acc. Chem. Res.* **2004**, *37*, 397–404.

[9] P. M. O'Neill, G. H. Posner, *J. Med. Chem.* **2004**, *47*, 2945–2964.

[10] For argument against the intermediacy of a high-valent iron-oxo species, see A. Robert, O. Dechy-Cabaret, J. Cazelles, B. Meunier, *Acc. Chem. Res.* **2002**, *35*, 167–174.

[11] S. Kapetanaki, C. Varotsis, *FEBS Lett.* **2000**, *474*, 238–241.

[12] G. H. Posner, J. N. Cumming, P. Ploypradith, C. H. Oh, *J. Am. Chem. Soc.* **1995**, *117*, 5885–5886.

[13] G. H. Posner, H. O'Dowd, T. Caferro, J. N. Cumming, P. Ploypradith, S. Xie, T. A. Shapiro, *Tetrahedron Lett.* **1998**, *39*, 2273–2276.

[14] The equilibrium geometry at ground state was calculated using the Hartree–Fock split-valence (3-21G) method of Spartan '02.

[15] For iron salts acting as Lewis acids toward trioxanes, see R. K. Haynes, S. C. Vonwiller, *Tetrahedron Lett.* **1996**, *37*, 257–260.

[16] S. Oae, in *The Organic Chemistry of Sulfur* (Ed.: S. Oae) Plenum, NY, **1977**, 385–390.